# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "MLModelSelection" in publications use:' type: software license: GPL-2.0-only title: 'MLModelSelection: Model Selection in Multivariate Longitudinal Data Analysis' version: '1.0' doi: 10.32614/CRAN.package.MLModelSelection abstract: An efficient Gibbs sampling algorithm is developed for Bayesian multivariate longitudinal data analysis with the focus on selection of important elements in the generalized autoregressive matrix. It provides posterior samples and estimates of parameters. In addition, estimates of several information criteria such as Akaike information criterion (AIC), Bayesian information criterion (BIC), deviance information criterion (DIC) and prediction accuracy such as the marginal predictive likelihood (MPL) and the mean squared prediction error (MSPE) are provided for model selection. authors: - family-names: Lee given-names: Kuo-Jung email: kuojunglee@mail.ncku.edu.tw repository: https://kuojunglee.r-universe.dev repository-code: https://github.com/kuojunglee/ commit: c619b68ac3a0230abf8eb6fb1f70191c03c8497d url: https://github.com/kuojunglee/ date-released: '2020-03-13' contact: - family-names: Lee given-names: Kuo-Jung email: kuojunglee@mail.ncku.edu.tw